Take of $=s l_{2}(\mathbb{C})$ and recall the kz-eq:

$$
k \frac{\partial}{\partial z_{i}} \Psi=\left(\sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{\Omega_{i j}}{z_{i}-z_{j}}\right) \Psi, i=1, \ldots, N
$$

Take $V=V_{\mu_{1}} \otimes V_{\mu_{2}} \otimes \ldots \otimes V_{\mu_{N}}$,
where $V_{\mu_{i}}$ is the lowest-weight Verna module over of with lowest weight - μ_{i}.
We have

$$
k=k+h^{v}
$$

Here we consider solutions with values in finite-dimensional spaces

$$
W=\left(V^{\mu^{-}}\right)^{\lambda}, \quad \lambda=-\sum_{i=1}^{N} \mu_{i}+\mu, \mu \in \oplus \mathbb{Z}_{+} \alpha_{i}
$$

λ is eigenvalue under diagonal action with $H: \quad H \omega=\lambda \omega, \omega \in W$
To simplify the discussion and to avoid having to deal with uull-vectors, we take $k \notin \mathbb{Q}$.

Recall: $\quad \Omega=E \otimes F+F \otimes E+\frac{1}{2} H \otimes H$

Let us consider $N=3$ (solutions in the tensor product of 3 spaces)
Proposition 5:
Any solution $\tilde{\Psi}\left(z_{1}, z_{2}, z_{3}\right)$ of $k z$ eq. can be written in the form

$$
\Psi\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}-z_{2}\right)^{\left(\Omega_{12}+\Omega_{13}+\Omega_{23}\right) / k} f\left(\frac{z_{1}-z_{2}}{z_{1}-z_{3}}\right),
$$

where $f(z)$ satisfies:

$$
\begin{equation*}
k \frac{\partial}{\partial z} f(z)=\left(\frac{\Omega_{12}}{z}+\frac{\Omega_{23}}{z-1}\right) f(z) \tag{*}
\end{equation*}
$$

Proof:
Introduce the variables

$$
x=\frac{z_{1}-z_{2}}{z_{1}-z_{3}}, \quad y=z_{1}-z_{3}, \quad t=z_{1}+z_{2}+z_{3}
$$

$\rightarrow K Z$ equations take the form

$$
\begin{aligned}
& K \frac{\partial \psi}{\partial x}=\left(\frac{\Omega_{12}}{x}+\frac{\Omega_{23}}{x-1}\right) \Psi, \\
& K \frac{\partial \Psi}{\partial y}=\left(\frac{\Omega_{12}+\Omega_{13}+\Omega_{23}}{y}\right) \Psi, \\
& K \frac{\partial \bar{\psi}}{\partial t}=0 .
\end{aligned}
$$

Since $\Omega_{12}+\Omega_{13}+\Omega_{23}$ commutes with $\Omega_{i j}$, this shows that the function

$$
f=y^{-\left(\Omega_{12}+\Omega_{13}+\Omega_{23}\right) / 12} \Psi(x, y)
$$

depends only on x and satisfies eq. (*).

Let us now consider the case $\mu=2$, then $\operatorname{dim} W=2$. If we assume that $\mu_{i} \neq 0$, then a basis of W is given tog:

$$
\begin{aligned}
& w_{1}=\mu_{2} E v_{1} \otimes v_{2} \otimes v_{3}-\mu_{1} v_{1} \otimes E v_{2} \otimes v_{3} \\
& w_{2}=\mu_{3} v_{1} \otimes E v_{2} \otimes v_{3}-\mu_{2} v_{1} \otimes v_{2} \otimes E v_{3} .
\end{aligned}
$$

Proposition 6:
Any solution $f(z)$ of $(*)$ can be written as follows.

$$
f(z)=z \frac{\mu_{1} \mu_{2}-2 \mu_{1}-2 \mu_{2}}{2 k}(1-z)^{\frac{\mu_{2} \mu_{3}}{2 k}}\left(F(z) \omega_{1}+z \frac{k}{\mu_{3}} F^{\prime}(z) \omega_{2}\right)
$$

where $F(z)$ is a solution of the Gauss hypergeometric equation

$$
z(1-z) \frac{d^{2} F}{d z^{2}}+[c-(a+b+1) z] \frac{d F}{d z}-a b F=0
$$

with $\quad a=\mu_{3} / k, \quad b=-\mu_{1} / k, c=1-\left(\mu_{1}+\mu_{2}\right) / k$.

Proof:
Explicit calculation shows that the action of Ω_{12}, Ω_{23} in the basis ω_{1}, ω_{2} is given by

$$
\begin{aligned}
& \Omega_{12} \omega_{1}=\left(\frac{1}{2} \mu_{1} \mu_{2}-\mu_{1}-\mu_{2}\right) w_{1} \\
& \Omega_{12} \omega_{2}=\mu_{3} \omega_{1}+\frac{1}{2} \mu_{1} \mu_{2} w_{2}, \\
& \Omega_{23} \omega_{1}=\frac{1}{2} \mu_{2} \mu_{3} \omega_{1}+\mu_{1} w_{2}, \\
& \Omega_{23} \omega_{2}=\left(\frac{1}{2} \mu_{2} \mu_{3}-\mu_{2}-\mu_{3}\right) w_{2} .
\end{aligned}
$$

Let us define

$$
g(z)=z^{-\frac{\mu_{1} \mu_{2}-2 \mu_{1}-2 \mu_{2}}{2 k}}(1-z)^{-\frac{\mu_{2} \mu_{3}}{2 / 2}} f(z)
$$

Then g satisfies the differential equation

$$
k \frac{d}{d z} g(z)=\left(\frac{\Omega_{12}^{\prime}}{z}+\frac{\Omega_{23}^{\prime}}{z-1}\right) g(z)
$$

where

$$
\begin{gathered}
\Omega_{12}^{\prime}=\Omega_{12}-\frac{1}{2}\left(\frac{1}{2} \mu_{1} \mu_{2}-\mu_{1}-\mu_{2}\right) I d: \\
\omega_{1} \mapsto 0, \quad \omega_{2} \mapsto \mu_{3} \omega_{1}+\left(\mu_{1}+\mu_{2}\right) \omega_{2} \\
\Omega_{23}^{\prime}=\Omega_{23}-\frac{1}{2} \mu_{2} \mu_{3} I d: \omega_{1} \mapsto \mu_{1} \omega_{2}, \\
\omega_{2} \mapsto-\left(\mu_{1}+\mu_{3}\right) \omega_{2} .
\end{gathered}
$$

\Rightarrow writing $g(z)=F_{1}(z) \omega_{1}+F_{2}(z) \omega_{2}$ implies that F_{1}, F_{2} satisfy the following system of differential equations:

$$
\begin{aligned}
& k \frac{d}{d z} F_{1}=\frac{\mu_{3}}{z} F_{2}, \\
& K \frac{d}{d z} F_{2}=\frac{\mu_{1}+\mu_{2}}{z} F_{2}+\frac{\mu_{1}}{z-1} F_{1}-\frac{\mu_{2}+\mu_{3}}{z-1} F_{2},
\end{aligned}
$$

which reduces the second equation to

$$
\begin{aligned}
\frac{k^{2}}{\mu_{3}}\left(z F_{1}^{\prime \prime}+F_{1}^{\prime}\right)= & \frac{k}{\mu_{3}}\left(\mu_{1}+\mu_{2}\right) F_{1}^{\prime}+\frac{\mu_{1}}{z-1} F_{1} \\
& -\frac{k\left(\mu_{2}+\mu_{3}\right)}{\mu_{3}(z-1)} z F_{1}^{\prime}
\end{aligned}
$$

Simplifying this, we get the hyper. eq. $(* *)$.
In particular, we can take the function F to be the "Gauss hypergeometric" func. ${ }_{2} F_{1}(a, b, c ; z)$ which is the only solution of $(* *)$ satisfying the b.c. $F(0)=1$. In the disk $|z|<1$, it can be represented as

$$
\begin{aligned}
& { }_{2} F_{1}(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{n!(c)_{n}}, \\
& (a)_{n}=a(a+1) \ldots(a+n-1) .
\end{aligned}
$$

§6. Vertex operators and OPE
Consider the space of conformal blocks for three points: $O \in \mathbb{C}, P$ and ∞
\longrightarrow associate level k highest weights λ_{0}, λ and λ_{∞}
\longrightarrow obtain space of conformal blocks $H\left(\left(0, p, \infty ; \lambda_{0}, \lambda, \lambda_{\infty}^{*}\right)\right.$ as the space of multi-linear maps

$$
\underline{\underline{\Psi}}: H_{\lambda_{0}} \times H_{\lambda} \times H_{\lambda_{\infty}}^{\infty} \longrightarrow \mathbb{C}
$$

invariant under diagonal action of meromorphic functions with values in of and poles at $0, p, \infty$.
Consider conformal block bundle

$$
\left.\varepsilon=\bigcup_{p \in \mathbb{C} \backslash\{0\}}\right) H\left(0, p, \infty ; \lambda_{0}, \lambda, \lambda_{\infty}^{*}\right)
$$

and let Ψ be a section of \mathcal{E}. Introduce bi-linear map

$$
\phi(v, z): H_{\lambda_{0}} \otimes H_{\lambda_{\infty}}^{*} \longrightarrow \mathbb{C}
$$

given by

$$
\phi(v, z)(u \otimes w)=\Psi(z)(u, v, w)
$$

for $u \in H_{\lambda_{0}}, v \in H_{\lambda}$ and $\omega \in H_{\lambda_{\infty}}^{*}$.
Regard $\phi(v, z)$ as linear operator from
$H_{\lambda_{0}}$ to $H_{\lambda_{\infty}}$. Note $H_{\lambda}=\prod_{d \geqslant 0} H_{\lambda}(d)$, with $H_{\lambda}(0)=V_{\lambda}$ (recall: $\left.L_{0} H_{\lambda}(d)=\left(\Delta_{\lambda}+d\right) H_{\lambda}(d)\right)$
Then we have the following
Proposition 1:
Let Ψ be a section of the above conformal block bundle ε. Then the linear operator $\phi(v, z), v \in V_{\lambda}, z \in \mathbb{C} \backslash\{0\}$, defined by $\phi(v, z)(u \otimes \omega)=\psi(z)(u, v, w)$ satisfies the commutation relation

$$
\begin{equation*}
\left[X \otimes t^{n}, \phi(v, z)\right]=z^{n} \phi(X v, z) \tag{*}
\end{equation*}
$$

for $X \otimes t^{n} \in \hat{o}$.
Proof:
Consider the meromorphic function $f(z)=X \otimes z^{n}, X \in o f, n \in \mathbb{Z}$. The action of $f(z)$ on $H_{\lambda_{0}}, V_{x}$ and $H_{\lambda_{\infty}}^{*}$ are given by

$$
f(z) u=\left(x \otimes t^{n}\right) u, u \in H_{x_{0}},
$$

$$
\begin{aligned}
& f(z) v=z^{n} X v, v \in V_{\lambda}, \\
& f(z) \omega=-\omega\left(X \otimes t^{n}\right), \omega \in H_{\lambda_{\infty}}^{*}
\end{aligned}
$$

\longrightarrow invariance of Ψ under action of f implies :

$$
\begin{aligned}
& \Psi\left(\left(X \otimes t^{n}\right) u, v, w\right)+z^{n} \Psi(u, X v, w) \\
& -\Psi\left(u, v, w\left(X \otimes t^{n}\right)\right)=0 \\
\Leftrightarrow & z^{n}\langle\omega, \phi(X v, z) u\rangle \\
= & \underbrace{\left\langle\omega\left(X \otimes t^{n}\right), \phi u\right\rangle}-\left\langle\omega, \phi\left(X \otimes t^{n}\right) u\right\rangle \\
= & \left\langle\omega,\left(X \otimes t^{n}\right) \phi u\right\rangle \\
= & \left\langle\omega,\left[X \otimes t^{n}, \phi(v, z)\right] u\right\rangle
\end{aligned}
$$

Relation (*) is called "gauge invariance"
Definition:
Suppose that Ψ is horizontal section of \mathcal{E} with respect to the connection $\nabla=d-\omega$. such an operator

$$
\mathcal{F}(z): H_{\lambda_{0}} \otimes H_{\lambda} \otimes H_{\lambda_{\infty}}^{*} \longrightarrow \mathbb{C}
$$

is called a "chiral vertex operator". $\phi(v, z), v=V_{\lambda}$, is called "primary field". The operators $\phi(v, z)$, $v \in \bigoplus_{d>0} H_{x}(d)$, are called "descendents".

